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Abstract19 

An accelerating global rate of sea level rise, coupled with direct human impacts to coastal 20 

watersheds and shorelines, threatens the continued survival of salt marshes. We developed a new21 

landscape-scale numerical model of salt marsh evolution and applied it to marshes in the Plum 22 

Island Estuary (Massachusetts, USA), a sediment-deficient system bounded by steep uplands. To 23 

capture complexities of vertical accretion across the marsh platform, we employed a novel 24 

approach that incorporates spatially variable suspended sediment concentrations and biomass of 25 

multiple plant species as functions of elevation and distance from sediment sources. The model 26 

predicts a stable areal extent of Plum Island marshes for a variety of sea level rise scenarios27 

through 2100, where limited marsh drowning is compensated by limited marsh migration into 28 

adjacent uplands. Nevertheless, the model predicts widespread conversion of high marsh 29 

vegetation to low marsh vegetation, and accretion deficits that indicate eventual marsh drowning. 30 

Although sediment-deficient marshes bounded by steep uplands are considered extremely 31 

vulnerable to sea level rise, our results highlight that marshes with high elevation capital can 32 

maintain their areal extent for decades to centuries even under conditions in which they will 33 

inevitably drown.34 
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Introduction35 

Coastal salt marshes occupy a precarious position in the landscape, linking land and sea 36 

in temperate latitudes along low-energy, gently-sloped coastlines. Within this setting they 37 

sequester carbon, cycle nutrients, provide habitat, stabilize shorelines, and buffer waves and 38 

storms (Zedler and Kercher 2005). Subject to hydrodynamics that dictate their geomorphology,39 

salt marshes persist via biophysical feedbacks between sediment accumulation, primary 40 

productivity, and sea level change (Redfield 1972; Friedrichs and Perry 2001; Morris et al. 41 

2002). However, during the past century, the global mean rate of sea level rise (SLR) has 42 

increased from 1.7 mm y-1 (1900-1990) to a current rate of 3.3 mm y-1 since 1993 (IPCC 2013; 43 

Wright et al. 2019). Projected global increases may exceed 15 mm y-1 by the end of the century, 44 

depending on future greenhouse gas emissions, and local rates in many regions may increase 45 

even faster (IPCC 2013; Horton et al. 2014; Nerem et al. 2018; Bamber et al. 2019). While salt 46 

marshes have largely survived changes in sea level over the past 4,000 years, an accelerating 47 

global rate of SLR jeopardizes the ability of marshes to maintain dynamic equilibrium with sea 48 

level (Kirwan and Megonigal 2013).49 

Recent observations of marsh submergence have prompted concern for salt marsh 50 

persistence worldwide (e.g.,(Reed 1995; FitzGerald et al. 2008; Kirwan and Megonigal 2013; 51 

Crosby et al. 2016). Extensive marsh loss from subsidence, accretion deficits, and human 52 

impacts has occurred in the world’s largest estuaries, including the Mississippi River Delta, 53 

Yellow River Delta, and Venice Lagoon (Carniello et al. 2009; Murray et al. 2014; Jankowski et 54 

al. 2017; Gu et al. 2018). However, several marshes in northwest Europe and North America55 

have shown resilience to SLR (French 2006; Kirwan et al. 2016a). The global extent of marshes56 

predicted by 2100 is widely variable: estimates range from 30% loss to 60% gain, depending on 57 
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available migration space (Schuerch et al. 2018; Rogers et al. 2019). Varying responses to SLR 58 

create a need for predictive models that evaluate salt marsh outcomes based on local conditions 59 

and under different SLR scenarios to inform strategies that can minimize future loss.60 

Coastal salt marshes naturally maintain stability relative to sea level through non-linear 61 

ecogeomorphic feedbacks that influence vertical accretion and landward transgression (Redfield 62 

1972; Friedrichs and Perry 2001; Morris et al. 2002; Mudd et al. 2009; Fagherazzi et al. 2012; 63 

Kirwan and Megonigal 2013; FitzGerald and Hughes 2019). Tidal flooding drives the 64 

accumulation of mineral sediments and organic material that contribute to marsh elevation gain. 65 

Tidal waters deliver mineral sediments to the marsh surface during periods of inundation. Marsh66 

vegetation facilitates sediment deposition by slowing water velocities and trapping sediment, and 67 

also supplies organic matter that contributes to elevation gain (Gleason et al. 1979; Nyman et al. 68 

2006; Li and Yang 2009). Rates of sediment deposition and primary productivity vary spatially 69 

across a marsh, depending on surface elevation relative to sea level and distance from tidal 70 

channels delivering sediment (Kirwan and Guntenspergen 2012; Schalles et al. 2013; Swanson et 71 

al. 2014; Roner et al. 2016). Because non-linear dynamics of mineral and organic accretion are 72 

fundamental to marsh evolution and resilience, it is critical that predictive models incorporate 73 

them when evaluating marsh response to SLR.74 

Marsh accretion rates tend to increase with flooding frequency so that marshes generally 75 

adapt to changes in SLR rates as long as surface elevations remain within the range required for 76 

plant survival (Morris et al. 2002; Cadol et al. 2014; Kirwan et al. 2016a). Marsh loss is also 77 

mitigated by lateral migration induced by SLR. Increased tidal inundation and salinity promote 78 

landward marsh encroachment into upland areas unencumbered by topographic or anthropogenic 79 

barriers (e.g., steep slopes, shoreline protection structures, urban development;(Kirwan et al. 80 
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2016a; b; Langston et al. 2017; Schieder et al. 2018; Borchert et al. 2018; Kirwan and Gedan 81 

2019). For marshes unable to keep pace vertically with SLR, landward migration is essential for 82 

survival (Schuerch et al. 2018). When upland marsh migration is restricted, marshes are 83 

subjected to coastal squeeze where lateral erosion results in loss of marsh area (Torio and 84 

Chmura 2013; Kirwan et al. 2016b; Thorne et al. 2018).85 

Marsh loss is most dramatic in regions where natural feedbacks between vertical 86 

accretion and SLR have been disrupted and/or landward transgression restricted (Kennish 2001; 87 

Kearney et al. 2002; Gittman et al. 2015). Human disturbances, including the construction of 88 

dams and reservoirs, afforestation, soil conservation, and agricultural sediment control practices 89 

disrupt feedbacks between marsh elevation and sea level by reducing sediment delivery (Kennish 90 

2001; Kirwan and Megonigal 2013; Weston 2014). Damming of rivers is a major cause of 91 

reduced sediment supply to coastal marshes that has resulted in marsh loss worldwide (Syvitski 92 

et al. 2005). Likewise, topographic and anthropogenic barriers cause marsh loss by limiting 93 

landward retreat (Doody 2013; Torio and Chmura 2013; Kirwan et al. 2016b; Enwright et al. 94 

2016). While much work has been done assessing general salt marsh responses to SLR, more 95 

work is needed to evaluate whether marshes with reduced sediment inputs and limited room for 96 

landward migration can survive SLR.97 

Predicting responses of marshes to SLR is challenging because complex interactions 98 

between tidal flooding, plant productivity, and sediment transport processes drive long-term 99 

behavior of coastal salt marshes (Kirwan et al. 2010; Kirwan and Megonigal 2013). Spatially 100 

resolved, landscape-scale models of salt marsh evolution tend to fall into one of two categories. 101 

One category emphasizes ecogeomorphic connectivity between channels and the marsh platform102 

(e.g.,(D’Alpaos et al. 2007; Kirwan and Murray 2007; Temmerman et al. 2007). These models 103 
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tend to be developed to explore general behavior or to make predictions for a single location, and 104 

rely on relatively complex parameterizations for the flow of water and sediment across the model 105 

domain. A second category of models emphasizes vertical accretion on the marsh platform itself106 

(e.g.,(Swanson et al. 2014; Schile et al. 2014; Alizad et al. 2016a; Cadol et al. 2016; Wu et al. 107 

2017; Thorne et al. 2018). These point-based models simplify spatial connectivity, and allow for 108 

easier parameterization and application to multiple sites. The most prominent point-based models 109 

(e.g. SLAMM, MEM, WARMER) can simulate the dynamic interaction between flooding 110 

frequency and vertical accretion but neglect lateral sediment transport across the marsh111 

(D’Alpaos and Marani, 2013), which leads to sediment deposition rates that depend only on 112 

marsh elevation.113 

Here, we propose a new, spatially resolved, landscape-scale model of salt marsh vertical 114 

accretion that accounts for lateral suspended sediment transport, as well as organic matter 115 

production of multiple plant species. We used the model to predict salt marsh response to SLR at 116 

the Plum Island Ecosystems (PIE) Long-Term Ecological Research Site (LTER; MA, USA).117 

This location is sediment-limited and bounded by steep uplands that limit marsh transgression. 118 

Given these constraints, we expected PIE marshes would be especially vulnerable to drowning 119 

under accelerated SLR but found that their initially high elevations allowed them to persist with 120 

no loss in areal extent through 2100.121 

Methods122 

Study site123 

The PIE LTER is a 60-km2 estuary that supports approximately 40 km2 of salt marsh, 124 

making it the largest remaining area of intertidal salt marshes in the northeastern US (Kirwan et 125 

al. 2011; Fig. 1). The marsh expanded rapidly during the 18th and 19th centuries when 126 
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deforestation increased sediment delivery to the coast following European settlement (Kirwan et 127 

al. 2011). The estuary is macrotidal and has a tidal range of 2.9 m. External sediment is supplied 128 

by the ocean and three major rivers: Parker, Ipswich, and Rowley, all of which are dammed. 129 

Median suspended sediment concentration is approximately 15 mg L-1 and varies across the 130 

estuary; at the head of the estuary it falls below 10 mg L-1 and reaches 40 mg L-1 at the mouth131 

(Hopkinson et al. 2018). The majority of the PIE landscape is composed of high marsh (mean 132 

elevation of 1.38 m above MSL) dominated by Spartina patens; low marsh (mean elevation of 133 

0.98 m above MSL), dominated by tall form S. alterniflora, accounts for ~10% of total salt 134 

marsh area (including ponds; Wilson et al. 2014). The local long-term (1921-2018) mean rate of 135 

SLR is approximately 2.83 mm y-1, based on the sea level trend at the Boston tide station 136 

(#8443970). In recent decades (1990-2018) the rate has increased to approximately 4.80 mm y-1.137 

Marshes at PIE are currently in dynamic equilibrium with the long-term rate of SLR, manifested 138 

by a cyclical pattern of pond formation and marsh recovery (Wilson et al. 2014), and mineral 139 

accretion supplemented by sediment from channel edge erosion (Hopkinson et al. 2018).140 

Model description141 

We developed a landscape-scale numerical model that incorporates a spatially variable 142 

suspended sediment concentration and calculates biomass for multiple plant species across the 143 

marsh platform. The model domain comprised all areas of PIE (excluding ponds) within the 144 

elevation range:145 

 ( , , )  + (1)146 

where Z(x,y,t) is the elevation (relative to MSL) of a location (x, y) at time t, z is the tidal range, 147 

and Zmax is defined as z2/4. The domain included the entire elevational extent of marshes at PIE, 148 

as well as areas of water and uplands within the elevation range. Elevations of water and uplands 149 
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within the domain were updated each time step relative to MSL. Marsh replaced water and 150 

uplands when elevations were within marsh range. Accretion was only calculated in marsh. The 151 

change in elevation in response to mineral and organic accretion (with rates Am and Ao,152 

respectively) under a relative SLR of rate R, is given by the mass balance:153 

= ( , , ) + ( , , ) (2)154 

where Am is a function of elevation and distance from the nearest channel or mudflat, and Ao is a 155 

function of elevation (Fig. 2). For simplicity, we assume no net mineral accretion within156 

intertidal open waters, including ponds, and passive inundation of upland areas ( = ). 157 

Mineral accretion model158 

We employed a simplified 1D transport model (Vinent et al. 2019), in which the decrease 159 

of mineral accretion rates (Am) with distance to the nearest channel/mudflat (Fig. 2a) can be 160 

approximated by an exponential function:161 

( , , ) =  ( ) 
( , )

(3)162 

where is a reference accretion rate, and is a length characterizing the spatial decay of 163 

mineral accretion. From mass conservation, the reference accretion rate is proportional to 164 

the sediment concentration at the marsh edge ( ), an effective falling velocity and the 165 

rescaled local inundation time (average fraction of time below water) ( ) = cos 1(2 / ):166 

( ) = ( ) (4)167 

where is the density of mineral sediments deposited on the marsh, and the fitting function 168 

= 1 + 1 + /2 (with values between 0.5 and 1) represents the effect of sediment 169 

inertia in the temporal decrease of suspended sediments during ebb flows.170 
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The decay length was found to scale with the ratio of tidal water discharge per unit 171 

width and the effective falling velocity:172 

=  (5)173 

where ( , ) is the length of the local drainage basin, T is the tidal period, ws is the settling 174 

velocity, and = 1.5 is a fitting parameter. After calculating the distance ( , ) to the 175 

channel/mudflat—defined by the MSL contour line ( ( , ) = 0)—we relate each point (x,y) to 176 

the closer local maximum of the distance to the channel field. We then define the drainage length 177 

( , ) associated with that point as the distance to the channel of that local maximum.178 

Organic accretion model179 

The organic accretion model incorporated biomass productivity for S. alterniflora and S.180 

patens to account for differing contributions of organic material in low and high marsh181 

environments. The rate of organic accretion (Ao) was determined by the following equation: 182 

( , , ) = (6)183 

where k is the recalcitrant fraction coefficient, assumed to be the lignin content of belowground 184 

biomass (Benner et al. 1984), Bi is the ratio of below- to aboveground biomass for plant species 185 

i, Pi is the aboveground biomass for species i, and is the density of organic sediments.186 

Aboveground biomass is a function of elevation, following the parabolic relationship described 187 

by Morris (2002):188 

( , , ) = + + (7)189 

where a, b, and c are coefficients that determine the upper and lower elevation limits of biomass190 

for species i. To compute biomass corresponding with elevation Z at location (x,y), coefficient 191 

=  + / , in which is the maximum aboveground biomass for species192 

i, and are minimum and maximum elevations at which aboveground biomass for 193 
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species i is calculated, and =  /2 . Coefficient = / , and =194 

/ .195 

Biomass elevation ranges differed from elevation distributions of S. alterniflora and S.196 

patens because elevation distributions did not overlap in the model (i.e., only one plant species 197 

occurred at a given elevation). The elevation marking the transition from low to high marsh 198 

(described below under Model parameterization) did not correspond with upper and lower199 

elevation limits supporting biomass of S. alterniflora and S. patens, respectively. Rather, 200 

biomass elevation limits for the two species overlapped (Fig. 2b). 201 

Model parameterization202 

To parameterize the model, we used spatial data, existing field measurements, and 203 

literature on PIE (Table 1). Initial elevations for the model (2011) were defined by a vegetation-204 

corrected digital elevation model (DEM) with a resolution of 1 m2, derived from 2011 LiDAR 205 

(referenced to NAVD 88; Edwards 2016). The DEM was converted to a spatial resolution of 10 206 

m2 before being applied to the model. The model converted the vertical datum to mean sea level 207 

(MSL); unless otherwise stated, all reported elevations are relative to MSL. Initial land cover 208 

was defined by a habitat raster for PIE based on the DEM and included four categories: water, 209 

low marsh, high marsh, and upland (Edwards 2016). We used the DEM and habitat rasters to 210 

create probability distributions of low and high marsh plants across elevation. We used these 211 

distributions to assign the elevation limits for low and high marsh (0.109 m and 1.81 m, 212 

respectively) and the transition elevation between low and high marsh (1.09 m), which 213 

corresponded with elevations where the probability of S. alterniflora and S. patens occurrences 214 

was approximately 50%. Since S. alterniflora can occur across the entire marsh elevation range, 215 

the upper elevation limit for S. alterniflora biomass was the same as the high marsh upper 216 
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elevation limit (1.81 m). The lower elevation limit for S. patens biomass was 0.4 m. Biomass 217 

elevation limits for both species were consistent with species elevation range limits previously 218 

developed from ground-truthed spectral classifications and 2011 LiDAR (Edwards 2016).219 

Elevations for peak biomass occurred at the midpoints of the biomass elevation ranges. 220 

Maximum aboveground biomass for each species was estimated from field data (Morris and 221 

Sundberg 2013a; b; Morris et al. 2013). Because reported ratios in the region vary widely 222 

(Valiela et al. 1976; Deegan et al. 2012), below- to aboveground ratios for S. alterniflora (4.5) 223 

and S. patens (1.8) were assigned that produced modeled accretion rates similar to observed 224 

rates.225 

Model validation226 

We compared modeled initial accretion rates (t=1) under the historical rate of SLR (2.83227 

mm y-1) to observed rates of elevation change from 11 surface elevation tables (SETs) installed 228 

at PIE, as well as observed accretion rates from 1 SET and 3 210Pb cores for which elevation 229 

change rates were not available (Wilson et al. 2014). Because the model treats accretion and 230 

elevation change in the marsh as synonymous, we included both types of observed data in our 231 

comparison. Modeled initial accretion rates closely matched observed data (Fig. 3; paired t = -232 

0.295, df=14, p = 0.799). More than half (60%) of modeled rates were within 1 mm of observed 233 

rates and all but 2 were within 2 mm. Mean modeled accretion rate among low marsh sites (n=6) 234 

was 6.29 mm y-1 compared to a mean observed rate of 6.77 mm y-1. Mean modeled accretion rate 235 

at high marsh sites (n=9) was 2.91 mm y-1 compared to a mean observed rate of 2.73 mm y-1.236 

Model sensitivity and uncertainty237 

To determine the sensitivity of modeled output to mineral and organic accretion 238 

variables, we conducted a global sensitivity analysis using the Morris method (Morris 1991). We 239 
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tested model sensitivity to 8 variables we expected to have the most influence on modeled 240 

accretion rates: , ws, Pi, Bi, k, and DEM elevation error (EDEM). The DEM elevation error was 241 

included to account for potential discrepancies between the DEM and actual ground elevations. 242 

We computed the mean elementary effect of each variable using UQLab v1.3 for Matlab based 243 

on 20 combinations of input variable values randomly generated from uniform distributions 244 

(requiring 180 model runs). Mean elementary effects (EE) indicated that accretion rates were 245 

robust to input variables. Among mineral accretion parameters, had more influence than ws246 

(mean EE = 0.09). Among organic accretion parameters, PSP and k had the most influence (mean 247 

EE of 0.34 and 0.50, respectively) and the strongest interaction effects among all variables.248 

Biomass ratios had no influence, and PSA had negligible influence (mean EE = 0.02). The 249 

influence of EDEM was similar to PSP (mean EE = 0.32).250 

We incorporated uncertainty into our model experiments to account for natural variation 251 

and uncertainty of input parameters, informed by the sensitivity analysis. Model experiments252 

(described below) included a range of input values for C0, PSA, PSP, and EDEM. Because the 253 

sensitivity analysis indicated interaction effects between PSP and k, we included variation for PSA254 

and PSP to represent uncertainty in organic accretion. Values were randomly generated from 255 

uniform distributions; bounds for distributions were determined using literature and PIE field 256 

data (Table 1). 257 

Model experiments258 

To evaluate the vulnerability of PIE marshes to SLR, we simulated accretion rates on an259 

annual time step for 90 years (2011-2100) under three scenarios of projected SLR (historical, 260 

medium, high). Rates of SLR were based on three emissions scenarios described in the IPCC 261 

Fifth Assessment Report (IPCC 2013): historical (2.83 mm y-1), RCP 6.0 (medium; 8.72 mm y-1
262 
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by 2100), and RCP 8.5 (high; 18.5 mm y-1 by 2100), and were adjusted for local subsidence 263 

inferred from Boston, MA (1921-2018). We determined marsh vulnerability by examining 264 

accretion rates, relative elevations, landscape composition, and areal extent of PIE marshes over 265 

time and comparing results for 2100 to initial conditions in 2011. Results are reported as 266 

means±1 SD computed from 300 model runs of each SLR scenario.267 

To test whether reducing human impacts increased the threshold rate of SLR that PIE 268 

marshes could survive, we compared maximum mineral accretion rates across the marsh 269 

landscape using a suspended sediment concentration of 15 mg L-1, and a hypothetical increased 270 

suspended sediment concentration of 30 mg L-1. Maximum accretion rates were calculated by 271 

setting the elevation of every point on the marsh to the minimum low marsh elevation (i.e., the 272 

minimum elevation at which S. alterniflora grows and the elevation at which maximum mineral 273 

accretion occurs in the marsh). For this test, all input variables were fixed. We used the midpoint 274 

values (1000 g m-2 and 1250 g m-2) from the uncertainty ranges for maximum aboveground 275 

biomass for S. alterniflora and S. patens, respectively. We evaluated the distribution of mineral 276 

deposition across the marsh landscape by comparing mineral accretion rates near tidal channels 277 

and in the marsh interior under both suspended sediment concentration scenarios. The distance 278 

defining marsh edge and marsh interior was based on a sediment transport length of 43.5 m 279 

(Zhang et al. 2019).280 

Results281 

Vertical accretion282 

The numerical model predicted high initial vertical accretion rates across PIE marshes283 

relative to the historical rate of SLR. The mean initial vertical accretion rate from 300 model 284 

runs was 3.45±0.83 mm y-1, with higher rates reaching 9.28±1.11 mm y-1 at lower elevations and 285 
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near channels. Accretion rates were dominated by organic accretion, which averaged 2.59 ±0.51286 

mm y-1 and represented 75% of total accretion. The mean organic accretion rate was twice as fast 287 

in low marsh (4.47±0.57 mm y-1) compared to high marsh (2.19±0.38 mm y-1), while the rate of288 

mineral accretion, which averaged 0.86±0.37 mm y-1, was 5 times faster in low marsh (2.63±0.55289 

mm y-1) compared to high marsh (0.52±0.28 mm y-1). Maximum mineral accretion occurred near 290 

channels, reaching 7.59±1.49 mm y-1.291 

Under the historical SLR scenario (2.83 mm y-1), vertical accretion rates equilibrated 292 

toward the rate of SLR over time to 3.04±0.39 mm y-1 (Fig. 4a). Under higher SLR scenarios, 293 

accretion rates increased through time (5.54 ±0.81 and 7.02±0.71 mm y-1 in 2100 for medium 294 

and high SLR scenarios, respectively), but were slower than SLR rates, which resulted in 295 

declining marsh elevations (Fig. 4b). Under the medium SLR scenario (8.72 mm y-1 by 2100),296 

most of the marsh area was in an accretion deficit relative to the rate of SLR by 2100. Only in 297 

low marsh along tidal channels and the Rowley River did accretion rates exceed the rate of SLR298 

(reaching 9.27±1.13 mm y-1; Fig. 5). An accretion deficit occurred at every position on the marsh299 

by 2100 under a high rate of SLR (18.5 mm y-1 by 2100). Accretion was fastest in low marsh 300 

along tidal channels and the Rowley River. The maximum accretion rate (9.33±1.10 mm y-1) in 301 

2100 was approximately half the rate of SLR.302 

Elevation and MSL303 

In 2011, modeled mean marsh elevation (excluding ponds) was 1.27±0.10 m above MSL304 

(Fig. 4b). Under the historical rate of SLR, MSL increased 0.25 m by 2100 while mean marsh 305 

elevation increased to 1.31±0.06 m above MSL. The distribution of marsh elevations in 2100 306 

largely overlapped with elevations in 2011, but the frequency of higher elevations increased, 307 

resulting in more high marsh (Fig. 6, Table 2). Mean sea level increased 0.60 m under the308 
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medium SLR scenario and marsh elevation decreased to 1.09±0.04 m (Fig. 4b). Mean elevation309 

occurred at the transition elevation from low to high marsh, resulting in increased frequencies of 310 

elevations within the low marsh range and near the lower elevation limit of high marsh by 2100311 

(Fig. 6). Under the high SLR scenario, MSL increased 1.02 m and mean marsh elevation 312 

dropped below the high marsh elevation range to 0.81±0.05 m (Fig. 4b). Little overlap remained 313 

between 2011 and 2100 elevation distributions as elevations across the marsh shifted into the low 314 

marsh range (Fig. 6).315 

Marsh habitat316 

In 2011, high marsh occupied 33.4±3.33 km2 and accounted for approximately 82% of 317 

total marsh area (Table 2). Under the historical rate of SLR, high marsh occupied nearly all 318 

(94%) of the total marsh area by 2100 as portions of adjacent uplands (1.7±0.19 km2) and low 319 

marsh (4.9±2.51 km2) converted to high marsh (Fig. 7). Under a medium SLR scenario, high 320 

marsh decreased in area (17.2±9.50 km2), and no longer dominated the landscape in 2100 321 

(occupying 39% of total marsh area). Mean low marsh area more than tripled (26.4±9.65 km2), 322 

due to the conversion of 20.3±7.0 km2 of high marsh to low marsh. Because mean marsh 323 

elevation in 2100 occurred at the transition from low to high marsh, even small differences in 324 

elevation between model runs created large variation in low and high marsh extents. Total marsh 325 

area increased to 43.6±0.28 km2 as uplands (2.39±0.26 km2) converted to high marsh and low 326 

marsh (0.24±0.13 km2) converted to open water. Under the high SLR scenario, PIE converted to327 

a low marsh-dominated system by 2060 (Fig. 8). By 2100, all high marsh present in 2011 328 

converted to low marsh. The conversion of uplands to marsh (3.7±0.25 km2) accounted for all 329 

high marsh present in 2100 (8% of total marsh area). Approximately 1.19±0.28 km2 of low 330 

marsh converted to open water, largely in low marsh areas along the Rowley River. Despite331 



16 

 

large-scale replacement of high marsh by low marsh, areal extent of PIE marshes increased to 332 

44.2±0.28 km2.333 

Dam removal334 

Supposing dam removal doubled suspended sediment concentration, the maximum 335 

mineral accretion rate would also approximately double near tidal channels and in the marsh 336 

interior. Near tidal channels, maximum accretion would increase by 5.96±1.33 mm y-1 (spatial 337 

mean) and by as much as 7.80 mm y-1. In the marsh interior, the mean maximum accretion rate 338 

would increase by 4.10±0.96 mm y-1, and by as much as 6.80 mm y-1 (Fig. 9).339 

Discussion340 

Model assumptions and advances341 

We created a model that incorporates spatially-variable nonlinear feedbacks characteristic 342 

of process-based models into a relatively simple, easily parameterized numerical model. Within 343 

the marsh, elevation change depended entirely on accretion rates because shallow subsidence at 344 

Plum Island is negligible (Hopkinson et al. 2018). Ponds were treated as static features and 345 

excluded from the model domain; though pond formation is cyclical, their extent is stable on the 346 

time-scale simulated in our model. Consistent with other landscape models, we excluded erosion 347 

as a driver of marsh area loss. Though an important source of internal sediment, marsh edge 348 

erosion throughout the entire estuary currently accounts for <0.1% of total marsh area per year349 

(Hopkinson et al. 2018). To maintain simplicity, the model also excluded processes that are not 350 

direct results of SLR, including nutrient-induced channel widening, sediment displacement and 351 

accumulation from ice rafting, and factors beyond SLR-driven geomorphic feedbacks that 352 

contribute to pond formation (Deegan et al. 2012; Wilson et al. 2014). The focus was to advance353 

landscape models by including dynamic, spatially variable mineral accretion rates that explicitly 354 
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relate marsh vulnerability to sediment availability across the marsh platform, and organic 355 

accretion rates for multiple plant species that reflect rates specific to low and high marsh zones. 356 

Therefore, at a given elevation in a marsh landscape, the model accounts for the range of 357 

accretion rates that occur with respect to elevation, distance from the nearest channel, and local 358 

drainage basin size (Fig. 2). The close approximation of modeled accretion rates to long-term 359 

observed rates of elevation change and accretion spanning low and high marsh zones360 

demonstrates the proficiency of the model in capturing on-the-ground vertical change (Fig. 3).361 

Long-term responses of PIE marshes to SLR362 

Model results suggest that PIE marshes will keep pace with the historical rate of SLR363 

(2.83 mm y-1) through 2100, despite low sediment supply, high tidal range, and limited 364 

opportunity for lateral retreat (Fig. 4, 5a). The initial mean accretion rate (3.45±0.83 mm y-1)365 

exceeds the historical rate of SLR, implying that combined mineral and organic sediments are 366 

sufficient to maintain elevation relative to MSL and preserve areal extents of low and high 367 

marsh. Accretion is expected to decrease towards the rate of SLR over time, signaling that PIE368 

marshes are in a state of dynamic equilibrium. This model prediction is consistent with other 369 

research on PIE marshes. Previous numerical modeling of a generic marsh with conditions 370 

similar to Plum Island suggested that PIE marshes could persist in meta-equilibrium under the 371 

current rate of SLR despite having reduced sediment supply (Kirwan et al. 2011). Analysis of 372 

historical imagery, sediment cores, and field experimentation likewise revealed the marshes are373 

in dynamic equilibrium, evidenced by the cyclical dynamics of pond formation and recovery374 

across the marsh platform (Wilson et al. 2014). Observed rates of elevation change and accretion 375 

that currently enable PIE marshes to maintain equilibrium are comparable to initial modeled 376 

accretion rates generated under the historical rate of SLR (Wilson et al. 2014).377 
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Model results, however, strongly suggest current sediment supply will be inadequate 378 

under medium and high rates of SLR (Fig. 4a, 5b, 5c). While marsh areal extent remained stable, 379 

slower accretion rates relative to medium and high rates of SLR drove elevation decline relative 380 

to sea level (Fig. 4b, 6). In response, flood-tolerant S. alterniflora supplanted S. patens in areas 381 

where elevation decreased below the range limit for S. patens (Fig. 7b, 8, Table 2). Spartina382 

patens, which cannot tolerate anoxic soils typical of low marsh (Bertness 1991), was completely 383 

replaced by S. alterniflora under a high rate of SLR as PIE converted to a low marsh system. 384 

Plant productivity experiments at PIE have also indicated accelerated rates of SLR would lead to 385 

eventual loss of S. patens (Morris et al. 2013). Predicted conversion to low marsh at PIE is 386 

consistent with vegetation responses already underway in other New England marshes387 

experiencing elevation declines relative to sea level (Watson et al. 2016). As the rate of SLR has 388 

outpaced accretion rates at Headquarters Marsh in Little Narragansett Bay, CT, S. alterniflora389 

and other low marsh plants have replaced S. patens over the past 50+ years (Warren and Niering 390 

1993). In Narragansett Bay, RI, SLR-induced migration of S. alterniflora into high marsh has 391 

been underway for at least 20 years (Donnelly and Bertness 2001). In regions where landward 392 

migration is possible, new high marsh supporting S. patens can develop in adjacent uplands. At 393 

PIE and other systems where room for migration is severely restricted, low marsh conversion 394 

will be coupled with loss of S. patens and its attendant ecological functions, namely, fixing 395 

nitrogen via mycorrhizae and providing habitat for nesting birds (Watson et al. 2016).396 

Accelerated accretion rates tend to accompany high to low marsh conversion as increased 397 

sediment delivery and contingent plant productivity accompany increased flooding. At PIE, 398 

accretion rates at low marsh SET and core sites are approximately 2.5 times higher than high 399 

marsh sites (Wilson et al. 2014). Model results predicted accretion rates would increase 61% and 400 
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103% by 2100 under medium and high rates of SLR, respectively, as the extent of low marsh 401 

increases (Fig. 4). Typically, the feedback between accretion rates and MSL enables low marsh 402 

elevations to stabilize relative to SLR (Kirwan et al. 2016a). For example, increased inundation403 

led to increased mineral deposition on undisturbed marshes in Long Island, NY, driving higher 404 

accretion rates and promoting marsh resilience (Kolker et al. 2010). When elevation decreases 405 

within the range supporting peak productivity of low marsh plants, organic accretion and 406 

increased carbon storage also enable marsh elevation to stabilize relative to sea level, as 407 

demonstrated in New England marshes in Cape Cod, MA (Gonneea et al. 2019). However,408 

similar to other sediment-poor, organic-rich New England marshes (Carey et al. 2017), our409 

model predictions suggest reduced sediment availability at PIE will prevent marsh elevation 410 

from stabilizing even as accretion rates increase across an expanding low marsh. Even if the 411 

maximum accretion rate predicted in 2100 (9.33±1.10 mm y-1) occurred at every position of the 412 

marsh platform, it would be insufficient to stabilize the elevation under a high rate of SLR.413 

Human impacts increase marsh vulnerability to SLR by disrupting feedbacks that drive 414 

vertical accretion and restricting lateral migration (Kennish 2001; Kirwan and Megonigal 2013).415 

Plum Island marshes are restricted primarily by sediment availability, which is naturally low in 416 

the region, and has been reduced further by human activities. Dams on the rivers feeding into 417 

PIE as well as extensive freshwater marsh and forest upstream limit sediment delivery to <10% 418 

of what is required for the marsh platform to maintain its elevation relative to sea level419 

(Hopkinson et al. 2018). Consequently, marshes must depend on marsh edge erosion, the ocean, 420 

and/or tidal flat erosion as primary sediment sources. Edge erosion potentially provides 31% of 421 

sediment needed to maintain marsh elevation under the current rate of SLR; sediment mass 422 

balance by Hopkinson et al. 2018 implies that the ocean and tidal flat erosion provide the 423 
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remaining sediment required for marsh accretion. Whether these sources can provide sufficient 424 

sediment under accelerated rates of SLR may largely dictate long-term marsh survival.425 

We considered a hypothetical case in which removing the dam on the Ipswich River 426 

located at the head of tide doubled suspended sediment concentration to 30 mg L-1 (Fig. 9).427 

Removal of this dam is an action under consideration by local officials that could increase 428 

sediment loading and prolong salt marsh survival (Hopkinson et al. 2018). Such increases could 429 

potentially enable mean vertical accretion to equilibrate to a medium rate of SLR (predicted to be 430 

5.54±0.81 mm y-1 by 2100 under the current suspended sediment concentration) and reduce 431 

marsh conversion under a high rate of SLR. Nevertheless, these are simplistic predictions 432 

because we have not modeled how dam removal would actually change suspended sediment 433 

concentrations.434 

PIE vulnerability vs. elevation capital435 

Salt marsh vulnerability to SLR is generally thought to depend on sediment availability, 436 

tidal range, and opportunity for landward migration. Marshes with insufficient sediment supply 437 

or unavailable surrounding uplands are frequently reported to be more susceptible to drowning 438 

than marshes with adequate sediment and accessible uplands (Reed 1995; FitzGerald et al. 2008; 439 

Kirwan et al. 2010; Day et al. 2011; Doody 2013). For example, sediment-deficient coastal 440 

wetlands along the East and Gulf Coasts of the US fed by dammed rivers and subject to higher 441 

rates of SLR are particularly vulnerable to drowning (Weston 2014). Previous numerical 442 

modeling has emphasized vertical and lateral constraints on wetland adaptability. Tidal marshes 443 

lacking available adjacent uplands in the San Francisco Bay Estuary were identified as less 444 

resilient to accelerated rates of SLR than marshes with room to migrate landward according to 445 

results from a MEM model (Schile et al. 2014). Likewise, marshes with low vertical accretion 446 
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and limited opportunity for migration along the US Pacific Coast face a high risk of drowning by 447 

2110 based on WARMER model results (Thorne et al. 2018). Results of a Hydro-MEM model 448 

also demonstrated that the portions of marshes in Florida most susceptible to drowning under 449 

accelerated rates of SLR were in areas with limited room for migration (Alizad et al. 2016a; b).450 

In contrast to previous work linking marsh vulnerability to sediment supply and landward 451 

migration, we found that PIE marshes are not immediately vulnerable to drowning despite their 452 

low sediment supply and migration potential. The areal extent of PIE was preserved even as 453 

accretion rates failed to keep pace and marsh elevation decreased because marshes in the estuary 454 

have high elevation capital. Elevation capital, or the vertical accumulation of material during 455 

marsh development that contributes to marsh elevation, provides marshes with a vertical reserve 456 

even when accretion rates cannot keep pace with SLR (Reed 2002; Cahoon and Guntenspergen 457 

2010).458 

The finding that elevation capital prolongs marsh survival is consistent with previous 459 

work. For example, Cahoon et al. (2019) found that among marshes with the same sediment 460 

source and subject to the same tidal range and rate of SLR in Jamaica Bay, NY, those with high 461 

elevation capital maintained their relative elevation, while the low elevation marsh depleted its 462 

vertical reserve and deteriorated. Marshes with elevation capital in southern New England were 463 

also found to be more stable because they produced more belowground biomass than lower, 464 

more frequently inundated marshes experiencing decline (Watson et al. 2017). However, 465 

elevation capital does not always alleviate the risk of drowning. Marshes along the US Pacific 466 

Coast were predicted to be highly susceptible to submergence due to low sediment supply and 467 

restricted lateral movement, despite having high elevation capital (Thorne et al. 2018).468 
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For PIE marshes, high elevation capital does not eliminate the long-term threat of marsh 469 

loss under accelerated SLR but slows the rate at which loss occurs. Our model predicts 470 

widespread vegetation change, accretion deficits across the marsh, including in low marsh areas 471 

near channels where mineral accretion is highest, and trajectories of decreasing elevation under 472 

medium and high rates of SLR. Therefore, PIE marshes could eventually be vulnerable to 473 

drowning, but on a timeline that extends beyond 2100. Although sediment-deficient marshes 474 

with limited migration space are considered extremely vulnerable to SLR (Reed 1995; Kirwan et 475 

al. 2016b; Raposa et al. 2017; Thorne et al. 2018), our results highlight that marshes with high 476 

elevation capital can maintain their areal extent for decades to centuries even under conditions in 477 

which they will inevitably drown.478 

479 
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Table 1. Model parameterization for computing mineral and organic accretion rates732 

Parameter Description Value Reference

Mineral Accretion (Am)

C0 Suspended sediment concentration 10-20 mg L-1 Hopkinson et al. 2018

ws Settling velocity 1 x 10-4 m s-1 Temmerman et al. 2005 Temmerman et al. 2005

m Inorganic sediment density 1.99 x 106 g m-3 Morris et al. 2016 (Morris et al. 2016)

Organic Accretion (Ao)

PSAmax S. alterniflora maximum biomass 500-1500 g m-2 Morris and Sundberg 2013a; b

PSPmax S. patens maximum biomass 750-1750 g m-2 Morris and Sundberg 2013a; b

BSA S. alterniflora biomass ratio 4.5

BSP S. patens biomass ratio 1.8

k Recalcitrant fraction coefficient 0.1 Benner et al. 1984

o Organic sediment density 8.5 x 104 g m3 Morris et al. 2016

Elevation (Z)

EDEM Potential DEM error Z±0.2 m Edwards 2016

733 

734 
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Table 2. Summary of habitat area (mean±1 SD) and percent change in habitat type between 2011 735 

and 2100 under historical, medium, and high SLR scenarios (n=300 model runs per scenario)736 

2011 Historical 2100 Medium 2100 High 2100

km2 km2 % change km2 % change km2 % change

Total marsh 40.7±0.48 42.4±0.28 +4 43.6±0.28 +7 44.2±0.28 +9

Low marsh 7.26±3.72 2.35±0.54 -68 26.4±9.65 +264 40.5±0.35 +458

High marsh 33.4±3.33 40.1±0.46 +20 17.2±9.50 -49 3.70±0.25 -89

Upland 2.40±0.26 2.02±0.13 -16 1.68±0.11 -30 1.33±0.09 -45

737 

738 
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739 

Figure 1. Location map of Plum Island Ecosystems LTER, Massachusetts, USA.740 

741 
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742 

Figure 2. Model design for mineral and organic accretion: a) mineral accretion rates (Am)743 

decrease with distance from the nearest channel and vary depending on local drainage basin size, 744 

illustrated using a constant elevation (z = 0.109 m) across the marsh (grid size: 10m2) and initial 745 

accretion rates; b) aboveground biomass (Pi: blue) and organic accretion rates (Ao: green) for 746 

Spartina alterniflora (below 1.09 m) and S. patens (above 1.09 m) depend on marsh elevation 747 

(arrow marks low to high marsh transition; dotted curve is the portion of the biomass curve 748 

outside modeled elevation range for each species); c) total, mineral and organic accretion rates 749 

across elevation (At: black; Am: orange; Ao: green) at every position on the marsh under initial 750 

conditions; for a given elevation, Am varies depending on distance from the nearest channel.751 
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752 

Figure 3. Model comparison: a) accretion and elevation change rates across elevation (modeled 753 

accretion rates: red circles; observed rates of elevation change: blue squares; observed accretion 754 

rates: blue diamonds); b) locations of observed rates from SETs and 210Pb cores reported in 755 

Wilson et al. 2014.756 



40 

 

757 

Figure 4. Mean marsh accretion rates (±1 SD) over time a) under the historical, medium, and 758 

high SLR scenarios (rate of SLR: blue line; At: solid orange; Am: dashed orange; Ao: dotted 759 

orange), and b) mean elevation (orange lines; ±1 SD) and MSL (blue lines) over time for 760 

historical (solid), medium (dashed), and high (dotted) SLR scenarios.761 
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762 

Figure 5. Total (At) accretion rates in 2100 for a) historical, b) medium, and c) high SLR 763 

scenarios. Inset highlights portion of PIE dominated by low marsh, where observed accretion and 764 

elevation change rates are measured.765 

766 
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767 

Figure 6. Elevation change for each SLR scenario: elevation distribution across the marsh 768 

platform in 2011 (black outline) and in 2100 for historical (yellow), medium (orange), and high 769 

(red) SLR scenarios.770 
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771 

Figure 7. Mean habitat area (±1 SD) over time (total marsh: solid black line; high marsh: dashed 772 

green; low marsh: dash-dot yellow; upland: dotted brown) and spatial distribution of habitat in 773 

2100 (high marsh: green; low marsh: yellow; water: blue; upland: brown) for a) historical and b) 774 

medium SLR scenarios. Note that white patches are ponds and high elevation areas outside the 775 

model domain.776 
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777 

Figure 8. Habitat changes under the high SLR scenario in a) mean area over time (±1 SD; total 778 

marsh: solid black line; high marsh: dashed green; low marsh: dash-dot yellow; upland: dotted 779 

brown), and b) spatial distribution in 2011, 2040, 2070, and 2100 (high marsh: green; low marsh: 780 

yellow; water: blue; upland: brown). 781 
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782 

Figure 9. Comparison of maximum mineral accretion rates under a) the current median783 

suspended sediment concentration of 15 mg L-1 and b) a hypothetical suspended sediment 784 

concentration of 30 mg L-1; elevation in each scenario was set to a uniform depth of 0.109 m 785 

above MSL.786 
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